1.2 传输线
传输射频信号的线缆泛称传输线。常用的有两种:双线与同轴线,频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本特性都可由传输线公式所表征。
·特性阻抗Z0 它是一种由结构尺寸决定的电参数,对于同轴线:
式中εr为相对介电系数,D为同轴线外导体内径,d为内导体外径。
·反射系数、返回损失、驻波比 这三个参数采用了不同术语来描述匹配特性,人们希望传输线上只有入射电压, 没有反射电压, 这时线上各处电压一样高,只是相位不同,而实际上反射总是存在的, 这就需要定义一个参数。式中ZL为负载阻抗, Z0为同轴线的特性阻抗。
由于反射系数永远≤1, 而且在甚高频以上频段手边容易得到的校准装置为衰减器,所以有人用返回损失(回损)R.L.来描述反射系数的幅度特性,并且将负号扔掉。
回损 R.L. = 20Log│ΓdB
(1.4)
有反射时, 线上电压即有起伏, 驻波比(S.W.R)是使用开槽测量线易得到的一个参数,比较直观。
当|Г|(1.6)
本仪器三种读数皆有, 可任意选用。
·阻抗圆图
如A,B两个规格的天线,若只在标网上选择,肯定选B而不要A,而在矢网上看,A比B有潜力得多,加个电容就比B好了。这种情况是大量存在的,在全波振子对测试中就是这种情况。因此,在调试中首先要将天线阻抗调集中(在圆图上成团)。举例来看,反射网与振子高度调节就有这种情况,折合振子单边加粗也有这种情况,然后再采取措施(如并电容,串电感,调短路片位置,改平衡器内导体等)使其匹配。而且经常不是使中频处于圆图中心,而是使整个频带处于中心某一小圆内,即牺牲一下中频性能,来换取总带宽。
阻抗圆图上适于作串联运算,若要作并联运算时,就要转成导纳;在圆图上这非常容易,某一点的反对称点即其导纳。请记住当时的状态,作阻抗运算时图上即阻抗,当要找某点的导纳值时,可由该点的矢徑转180°即得;此时圆图所示值即全部成导纳。状态不能记错,否则出错。记住,只在一个圆图上转阻抗与导纳,千万不要再引入一个导纳圆图,那除了把你弄昏外,别无任何好处。另外还请记住一点,不管它是负载端还是源端,只要我们向里面看,它就是负载端。永远按离开负载方向为正转圆图,不要用源端作参考,否则又要把人弄昏。圆图作为输入阻抗特性的表征,用作简单的单节匹配计算是非常有用的,非常直观,把复杂的运算用简单的形象表现出来,概念清楚。但对于多节级连的场合,还是编程由计算机优化来得方便。